
E�cient Computation of Gradients andJacobians by Dynamic Exploitation of Sparsity inAutomatic Di�erentiation�Christian H. Bischof,y Peyvand M. Khademi,y Ali Bouaricha,y andAlan CarlezArgonne Preprint MCS-P519-0595Abstract. Automatic di�erentiation (AD) is a technique that augments computer codes with statementsfor the computation of derivatives. The computational workhorse of AD-generated codes for �rst-orderderivatives is the linear combination of vectors. For many large-scale problems, the vectors involved in thisoperation are inherently sparse. If the underlying function is a partially separable one (e.g., if its Hessianis sparse), many of the intermediate gradient vectors computed by AD will also be sparse, even though the�nal gradient is likely to be dense. For large Jacobians computations, every intermediate derivative vector isusually at least as sparse as the least sparse row of the �nal Jacobian. In this paper, we show that dynamicexploitation of the sparsity inherent in derivative computation can result in dramatic gains in runtime andmemory savings. For a set of gradient problems exhibiting implicit sparsity, we report on the runtimeand memory requirements of computing the gradients with the ADIFOR (Automatic DI�erentiation ofFORtran) tool, both with and without employing the SparsLinC (Sparse Linear Combinations) library,and show that SparsLinC can reduce runtime and memory costs by orders of magnitude. We also computesparse Jacobians using the SparsLinC-based approach|in the process, automatically detecting the sparsitystructure of the Jacobian|and show that these Jacobian results compare favorably with those of previoustechniques that require a priori knowledge of the sparsity structure of the Jacobian.Key words. Automatic Di�erentiation, Sparsity, Partial Separability, Sparse Jacobians, Large-ScaleOptimization, MINPACK-2, ADIFOR, SparsLinC.1 IntroductionThe numerical computation of gradients and Jacobians is an important step in the solutionof many nonlinear problems, such as numerical optimization, mesh computations, nonlinearleast squares, and systems of di�erential and algebraic equations. For such problems, thederivative computation is often a major contributor to the overall cost, in terms of bothruntime and memory requirements.�This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy, underContract W-31-109-Eng-38, by the National Aerospace Agency under Purchase Order L25935D and Co-operative Agreement No. NCCW-0027, and by the National Science Foundation, through the Center forResearch on Parallel Computation, under Cooperative Agreement No. CCR-9120008.yMathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne,IL 60439, (bischof,khademi,bouarich)@mcs.anl.gov.zCenter for Research on Parallel Computation, Rice University, 6100 S. Main St., Houston, TX 77251,carle@cs.rice.edu. 1

Automatic di�erentiation (AD) is a technique by which codes for the computation offunctions are augmented to produce codes for the computation of desired derivatives of thosefunctions. AD relies on the fact that every function is executed on a computer as a sequenceof elementary operations, such as + and {, and intrinsics, such as sin and log. By successiveapplications of the chain rule to the composition of those elementary operations, derivativescan be computed exactly (up to machine roundo�) and in a completely mechanical fashion.For a detailed description of AD, see [20].Previous studies have shown that AD is a powerful technique for computing derivatives.Accuracy and runtime e�ciency of AD are superior to di�erence approximations, and thereliability,
exibility and development-time e�cacy of AD surpass those of hand-codingapproaches. For example, the AD tool ADIFOR (Automatic DI�erentiation of FORtran)[5, 7, 8] has been used to generate derivative codes for many applications in areas such aslarge-scale optimization [2, 14], computational
uid dynamics [9, 10, 15], weather modeling[26], and groundwater modeling [11]. Other examples of available AD tools are Odyss�ee[27] and GRESS [23] for Fortran, and ADOL-C [21] and ADIC [13] for C programs.The forward and reverse modes are the two basic modes of AD, and are distinguishedby the manner in which the chain rule is applied for propagating derivatives. This basicdi�erence impacts the computational complexity and
exibility of each mode. The forwardmode, despite its
exibility and the predictability of its memory requirements, has thusfar been considered impractical for the computation of large-scale gradients, because of itsruntime complexity. In this paper, we consider only the forward mode, and show that insome cases this perceived limitation of the forwardmode can be overcome by the exploitationof sparsity.Computationally, the most expensive kernel of derivative codes generated by primarilyforward mode tools such as ADIFOR and ADIC is a vector linear combination (VLC):w = kXi=1 �ivi; (1:1)where w and the vi are gradient vectors, the �i are scalar multipliers, and k is the arity. Ifwe assume that the gradient vectors are all of same size, say d, then a computation com-posed primarily of invocations of (1.1), implemented as a dense vector loop, would havecomputational complexity linear in d, in terms both of runtime and memory requirements(this type of implementation is used in the default or NONSPARSE mode of ADIFOR, exam-ples of which we will show in Section 3). On the other hand, if the gradient vectors aresparse, then strategies that attempt to exploit that sparsity, in terms of both the storage ofvectors and the implementation of the computation, can be expected to reduce the overallcomputational complexity. For any given problem, the extent of this reduction in complex-ity will depend not only on the e�ciency of the sparse algorithm, but also on the sparsitycharacteristics of the underlying function.For many large-scale problems there is inherent sparsity in the computation of gradientsand Jacobians. In gradient computations, the scalar output function, f : Rn ! R, isusually dependent on all of the inputs, resulting in a dense gradient vector g = rf � Rn.However, it has been shown that if the Hessian of f is sparse, then f is partially separable2

[22]; that is, f can be expressed as f(x) = mXi=1 fi(x); (1:2)where m is the number of element functions fi(x), and each fi(x) is typically a functionof just a few of the components of x, implying that each gi(x) = dfidx will be sparse, eventhough g(x) =Pmi=1 gi(x) is dense.Sparsity in the derivative computations is likewise a salient issue in many large-scaleJacobian computations where the �nal Jacobian associated with a function f : Rn ! Rmis sparse. As we will see in Section 2, the sparsity of the �nal derivative result implies equalor greater potential for sparsity in the intermediate computations.The various approaches used for exploiting sparsity in Jacobian computations can gen-erally be grouped into two categorizes: static and dynamic. Static approaches use a prioriknowledge of the sparsity structure of the sparse Jacobian to map the Jacobian to an equiv-alent Jacobian { referred to as the compressed Jacobian { with signi�cantly fewer columns.The success of the static method depends on �nding a minimal number of columns, sincethis number is a good approximation for the computational complexity of these methods,as a multiplicative factor of the cost to compute the function. Coleman and Mor�e [17] intro-duced an algorithm for a terse mapping based on graph-coloring heuristics, and successfullyapplied this algorithm to large-scale optimization problems. Their approach applies equallywell to automatic di�erentiation as it does to �nite di�erencing, and we make use of it in thispaper. Using an alternative approach, Newsam and Ramsdell [25] showed that the sparseJacobian can be estimated with q + 1 function evaluations, where q is the maximum of thenumber of nonzero elements in any row of the Jacobian. However, this approach requiresthe solution of a system of linear equations with a potentially ill-conditioned matrix. Hence,we decided to employ the numerically safe Coleman/Mor�e approach.The dynamic approach, which can also be applied to gradient computations, involvesusing dynamically allocated memory and sparse data representations for storing and pro-cessing only the nonzero information in the derivative objects. An implementation of thisapproach was introduced by Dixon, Maany, and Mohseninia [19], using the operator over-loading capabilities of ADA, and speci�c to codes written in that language. For �rst orderderivative computations, their implementation of a sparse doublet consists of a linked list,with each entry representing a nonzero in terms of its position in the vector, its value,and a pointer to the next entry. A more e�cient implementation was introduced by M.C.Bartholomew-Biggs, L. Bartholomew-Biggs, and B. Christianson [3], who used a recurrentrecycling scheme for freed up dynamically-allocated memory. These and others works [18]demonstrated the runtime e�ciency of the dynamic approach for some small- to medium-sized problems (n � 500).The SparsLinC (Sparse Linear Combinations) library [6, 8] is a software package for ex-ploiting sparsity in AD, using the dynamic approach. In this paper, we report on the runtimeand memory performance measures of di�erentiating large-scale (n � 160; 000) optimizationcodes with ADIFOR when interfaced with SparsLinC, and contrast these with NONSPARSEADIFOR results (i.e., without SparsLinC). The codes are taken from the MINPACK-2 testset problems [1] and the molecular distance geometry class of global minimization functions[24]. In Section 2 we look at sparsity in the context of the computation of VLCs in AD and3

show how this can be exploited with SparsLinC. Computational results for the gradient andJacobian experiments are shown in Sections 3 and 4, respectively. Finally, we present ourconclusions in Section 5.2 Sparsity in First-Order Derivative ComputationFor large-scale problems, gradient vectors appearing in VLCs in AD computations are oftenvery sparse. In this section, we de�ne sparsity in the context of AD computations, andidentify characteristic problem types where sparsity in derivative computations occurs. Wealso give a brief overview of SparsLinC and show how it exploits sparsity.2.1 De�nition of Sparsity in Automatic Di�erentiationTo de�ne sparsity, we �rst revisit some basic AD and ADIFOR de�nitions. All AD toolsrequire the user to specify, from among the program variables, the independent and depen-dent variables; the independents being the ones with respect to which the partial derivativesof the dependents are to be computed. In addition, ADIFOR performs an activity analysispass, whereby all variables possibly lying on the dependency path from the independent tothe dependent variables are nominated as active variables (by de�nition, the independentsand dependents are themselves active).A directional derivative, de�ned aslimh!0 f(x+ h � e)� f(x)h ; (2:1)is the partial derivative of an active variable along a direction vector e. In ADIFOR, theuser speci�es the complete set of desired directions by means of the seed matrix. In thesimplest case, each unit direction is de�ned by one of the independent variables, which isequivalent to setting the seed matrix to the identity matrix. A directional gradient vectoris de�ned to be the set of directional derivatives of any scalar active variable with respectto all directions speci�ed in the seed matrix (the term scalar active variable here refers toactive variables declared as scalars in the program and also to the individual elements ofactive variables that are declared as arrays). In the context of AD, the vector operandsin (1.1) are directional gradient vectors.In the NONSPARSE representation, a directional gradient vector V would be declared inthe derivative code as an array variable of length d, where d is the number of directions.We denote the number of nonzeros in V at a given point t during the execution by Vt:nonz .The percentage of zero entries or sparsity of Vt is de�ned asVt:sparsity := (1� Vt:nonzd) � 100%: (2:2)A good measure for the overall sparsity present in a derivative computation is the medianof the sparsities of all directional gradient vectors computed during the execution of thederivative code. We also de�ne the umbrella term sparsity characteristics to refer to thesparseness of all directional gradient vectors during the execution of a derivative code.One implication of (2.2) is that d sets an upper bound on the overall sparsity in aproblem. For example, if d = 10, overall sparsity is bounded above by 90% (given that,4

from the de�nition of active variables, usually Vt:nonz � 1). This underscores a necessary(but not su�cient) condition in terms of the practicality of a sparse solution: in order forSparsLinC|or any other strategy for exploiting sparsity in AD|to improve the runtimeperformance of derivative computation, the number of directions with respect to which wewish to compute derivatives should be \large." Otherwise, the directional gradient vectorswill be short, and runtime e�ciences gained by exploiting sparsity will be defeated byimplementation overheads. The determination of what is considered a large sparse problemis to a great extent dependent upon the nature of the problem.Another important fact relating to sparsity in derivative computations is that in alllikelihood the �nal sparsity of the least sparse directional gradient vector corresponding tothe dependent variables sets the upper bound on the number of nonzeroes of all intermediatedirectional gradient vectors during the execution. This means that the overall sparsity of theproblem may be much higher than that of the �nal derivative result. This fact follows fromthe formation of structural merges in VLCs. The notational equation (2.3) is a depictionof a structural merge, that is, the additive propagation of nonzero structures of the right-hand-side vectors to the left-hand-side vector:0BBBBBBB@ 3333 1CCCCCCCA(0BBBBBBB@ 3 1CCCCCCCA+ 0BBBBBBB@ 33 1CCCCCCCA +0BBBBBBB@ 33 1CCCCCCCA : (2:3)Here, the symbol 3 represents a nonzero entry (zero entries are left blank), d = 5,and the nonzero index set of the resulting left-hand-side vector is the union of index setsof the right-hand-side vectors.� Given that a left-hand-side vector in a VLC will usuallyappear as a right-hand-side vector in a subsequent VLC, it is easy to see that the impact ofthe statement-level structural merge in (2.3) is that sparsity diminishes as the computationproceeds. It is the converse of this result that motivates our work, namely, if we suspect thatthe �nal derivative object we seek is sparse, then we can expect that all directional gradientsvectors (i.e., operands of all VLCs in the derivative computation) will be as sparse|and,with great likelihood, more sparse.Figure 2.1 depicts the sparsity characteristics of directional gradient vectors in the gra-dient computation of the GL2 problem, which will be introduced in Section 3. The com-putation involved over 30,000 VLCs. For every 250 VLCs, we gathered statistics on thenumber of nonzeroes in the resultant left-hand-side vectors and plotted the minimum, max-imum, median, and average on the graph. We note that the fact that the maximum dropsfrom about 2,500 nonzeroes to about 500 at around the 26,000-th VLC is not indicative ofa decrease in the number of nonzeroes of a particular vector, but rather that among thevectors appearing on the left-hand side of the 250 VLCs previous to the 26,000-th, the one�This discussion precludes the possibility of the occurrence of (i) numerical zeroes resulting from exactcancellation (e.g., a+ (�a)), and (ii) zero multipliers. In our experience, exact cancellation rarely occurs inderivative computation, and currently, SparsLinC does not check for it (i.e., numerically zero vector entriesare treated like nonzero entries). SparsLinC does, however, check for zero multipliers, and vectors with zeromultipliers are not referenced in VLC computations. 5

0 10000 20000 30000
Vector Linear Combinations Performed during Execution

0

500

1000

1500

2000

2500

3000

No
nze

roe
s p

er
Le

ft-H
and

-Si
de

Ve
cto

r

Sparsity Charcteristics of GL2 (n=2,500)

Minimum

Maximum

Median

Average

Figure 2.1: Sparsity of vectors on the left-hand side of vector linear combinations performedby SparsLinC during the execution of the gradient code for GL2, n = 2,500.with the maximum number of nonzeroes had about 500. In fact, the �nal gradient vectoris fully dense (with 2,500 nonzeroes).The main conclusion to be drawn from Figure 2.1 is that the median and average curvesare always far below 2,500, the maximum vector size, thus implying that signi�cant savingscould be achieved in the computation of VLCs by exploiting sparsity. We note that theoverall sparsity inherent in a derivative computation is largely a function of sparsity presentin intermediate computations, and not so much the sparsity of the �nal result.2.2 Characteristic Sparse Derivative ProblemsPartially separable functions and their gradients arise in many computational contexts, inparticular in large-scale optimization problems. In Section 1 we de�ned these functions (1.2)as a summation of element functions. Since each element function depends only on veryfew components of the independent variable, each corresponding directional gradient vectoris sparse, and typically, the only dense vector present in the computation is the gradient ofthe partially separable function itself (the example in Figure 2.1 is one such case).In terms of how to exploit the sparsity in these gradient computations, it is importantto note that the mathematical notion of separability de�ned in (1.2) may not always bere
ected in terms of how the code for a partially separable function is written (i.e., theseparability may not be re
ected in the code structure). Though in some cases the ex-plicit reformulation of the code for such functions is a viable alternative leading to e�cientderivative computations of equivalent compressed Jacobians (see Section 4.1 and also [4]),in other cases, an algorithmic approach that transparently (i.e., without the need to rewritecode) exploits this \under-the-rug" sparsity may be preferable. Our results in Section 3 willdemonstrate the e�ciency of computing gradients of partially separable functions using thelatter approach as implemented in SparsLinC.6

Large sparse Jacobian problems occur frequently in many contexts, and computing themwithout e�ective sparse strategies either has been prohibitively expensive or has dependedon a priori knowledge of the closure of the sparsity patterns of the Jacobian, where closuredenotes the union of the sparsity patterns for all values of the independent variables. Incontrast to partially separable functions where some gradient vectors may be dense, theAD computation of sparse Jacobians, by de�nition, involves only sparse directional gradientvectors.In Section 4 we brie
y review the compressed Jacobian approach, which has previouslybeen used [17, 2] as an e�ective strategy for computing sparse Jacobians in cases wherethe closure sparsity pattern is known. We then present our results of computing sparseJacobians with known closures using the ADIFOR/SparsLinC approach, and contrast theseresults with those based on the compressed Jacobian method.2.3 Exploiting Sparsity with SparsLinCOur intent is to take advantage of inherent sparsity in directional gradient vectors to reduceboth memory requirements and runtime of derivative computation. By devising a schemethat would preclude the storage of zero entries as well as extraneous \zero-sum" computa-tions resulting from the zero entries, we can save on memory and runtime. The dynamicnature of the directional gradient vectors during the execution of AD-generated derivativecodes, in terms of the number of nonzero entries in a vector at a given time, as well asthe goal of obviating the need for a priori sparsity information requires that the vectors berepresented by using dynamic data structures.SparsLinC is a library of C routines that provide an implementation of VLCs employingdynamic data structures to represent the directional gradient vectors. When invoked in itsSPARSE mode, ADIFOR generates code in which each VLC is implemented as a call to aSparsLinC routine, as opposed to the DO-loop implementation in the default (NONSPARSE)mode. Whereas for every scalar active variable, NONSPARSE ADIFOR allocates a correspond-ing directional gradient vector of size d containing the derivative values (many of which maypossibly remain zero for the duration of the computation), SPARSE ADIFOR allocates anINTEGER variable that is interpreted as a pointer to SparsLinC's representation of the vector.The design of SparsLinC is based on representing the nonzero information in each vec-tor (i.e., the nonzero values and their corresponding vector indices) in one of three datastructures|one to represent a vector with zero or one nonzero entries (S1); another fora vector with a few nonzeroes (SS), and a third for a vector with contiguous ranges ofnonzeroes (CS). The SparsLinC polyalgorithm heuristically switches between these repre-sentations. SparsLinC performs the necessary management of its internal vector represen-tations, including the implementation of a \grow as you go" strategy for the recruitmentof dynamically allocated memory for the storage of the sparse vectors, and a recurrent re-cycling scheme for the reuse of memory. The SS and CS sparse representations make useof a bucket storage scheme, where each bucket consists of a (user-con�gurable) number ofelemental data types. Memory is dynamically allocated in units of stores of buckets. Incontrast to other sparse implementations [3, 19] which allocate memory for each nonzeroseparately, the bucket scheme allows for greater
exibility and runtime e�ciency, at thecost of introducing some storage overhead (not all of the allocated memory is necessarily7

Table 3.1: MINPACK-2 Unconstrained Optimization ProblemsName Description of the ProblemEPT Elastic-Plastic TorsionGL2 Ginzburg-Landau (2-d) superconductivityMSA Minimal Surface AreaODC Optimal Design with Composite materialsPJB Pressure distribution in a Journal BearingSSC Steady State Combustionused).The basic module of SparsLinC performs a VLC (1.1) by using a heapsort to pop thesmallest-indexed nonzero (or nonzero range, in the CS case) present among the right-handside vectors, and constructing the left-hand-side vector in a one-pass traversal. A special\plus-equals" module takes advantage of the existing data structure of the left-hand-sidevector in cases in which the same vector also appears on the right-hand side, thus resultingin a more e�cient computation.Two features of SparsLinC are of particular relevance to the present discussion: thetransparent exploitation of partial separability, and automatic detection of the sparsitypattern of the Jacobian. Previous attempts at exploiting partial separability in the contextof AD have been based on manual modi�cation of the code for the function in such a way asto transform the derivative computation from a dense gradient problem to a sparse Jacobianproblem [12]. The transparent exploitation of partial separability in SparsLinC does notrequire code modi�cation. Instead, it relies on the sparse representation and processing ofthe VLCs involving the element functions, and on the e�ciency of the plus-equals modulefor the accumulation of the dense gradient vector.The detection of the sparsity pattern of Jacobians is of interest in a number of compu-tations (e.g., see [14]). As we shall see in Section 4, sparsity detection is a prerequisite forcompressing Jacobians using coloring methods. In our Jacobian experiments we use pre-packaged MINPACK-2 routines for detecting the sparsity pattern of the Jacobian for eachproblem. However, in the absence of such special routines (or in cases where the sparsitypattern varies for di�ering values of the independent variable), we can use SparsLinC forthis purpose. The computation of the Jacobian using SparsLinC yields the sparsity patternof the Jacobian as a natural byproduct of the work it does in computing the Jacobian.A detailed description of the SparsLinC library will be reported elsewhere, and the fullFortran interface speci�cation can be found in [6].3 Computing Gradients of Partially Separable FunctionsThe MINPACK-2 Test Problem Collection [1] contains a number of unconstrained opti-mization problems from a variety of application areas. Table 3.1 shows the six MINPACK-2problems we used in our gradient experiments. For each problem, we computed the gra-dient using both the NONSPARSE ADIFOR approach and the SPARSE ADIFOR/SparsLinC8

Table 3.2: Memory Requirements for Gradient Problems (in Mbytes; n = 160; 000)Problem MfFg MfGAD�16g MfGAD�16g=MfFg MfGSparseg MfGSparseg=MfFgEPT 1.29 23.06 17.8 14.15 11.0GL2 2.59 45.03 17.4 19.65 7.6MSA 2.57 24.34 9.5 12.60 4.9ODC 1.29 23.06 17.8 13.05 10.1PJB 1.29 23.06 17.8 14.16 11.0SSC 1.29 23.06 17.8 14.15 11.0approach, and compared the memory requirements and runtimes of the two approaches (inwhat follows we will simply refer to the two approaches as NONSPARSE and SPARSE, respec-tively). We performed our experiments on two workstation platforms: Sun SPARCstationIPX, and IBM RS6000-370.The gradient values obtained for all problems using both the NONSPARSE and SPARSE ap-proaches agreed to within machine precision of the hand-coded derivatives, available inMINPACK-2.3.1 Memory RequirementsIn terms of feasibility, memory is a critical issue in the computation of large gradients. Thememory required for a straightforward AD implementation of the gradient computationwould be roughly equivalent to augmenting the memory required for the function compu-tation by a factor of n, where n is number of components of the independent variable,alternately referred to as the problem size. For large n, this linear expansion can lead toexcessive paging, or simply be prohibitive. For example, a NONSPARSE ADIFOR implemen-tation of the gradient computation for the GL2 problem of size 160,000 would require morethan 400 gigabytes of virtual memory.One approach to breaking the linear memory dependence is stripmining of derivativecomputation. This approach involves dividing the gradient computation into strips, eachstrip consisting of the di�erentiation with respect to a few components of the independentvariable, and each strip having reasonable memory requirements (as we will see in Section4.3, stripmining can also be used in Jacobian computations). In the case of ADIFOR-generated code, stripmining can be done conveniently through the seed matrix mechanism.The runtime penalty for this approach is an extraneous function recomputation per strip,which can be e�ectively amortized for large strip sizes. Since each strip is computed indepen-dently, stripmining can also be used for easy parallelization of the gradient computation [10].�The Unix command `size executable-�le' reports the total amount of statically allocated memory (i.e.,the memory requirements that can be assessed at link-time such as array sizes, etc.) needed to load and runthe executable. In the case of SparsLinC, where memory is also allocated dynamically, we call a SparsLinCroutine that reports the total amount of dynamically allocated memory, and add this to the staticallyallocated memory, in order to arrive at the total memory requirements.9

Table 3.2 contains a summary of the memory requirements� of our gradient experimentsfor the case of n = 160; 000. We use the notationMfCg to denote the memory requirementsof a computation C, and we report only one set of numbers, since memory requirements onthe two test-bed platforms are identical. The �rst column in Table 3.2 shows the memoryrequired for computing the original function, F . The next double column shows �rst thememory requirements, MfGAD�16g, of a stripmined NONSPARSE computation with a stripsize ps = 16, and then the ratio of this gradient memory requirement to that of the cor-responding original function. We note that in each case except one, MfGAD�16g=MfFgis slightly greater than ps, matching our expectation of linear augmentation in memoryrequirements. The exception is the MSA problem, where the MfGAD�16g=MfFg ratio issmaller than ps. Here the computations involving a large work array in the original functionare unrelated to derivative computation; hence ADIFOR does not generate a correspondingaugmented derivative work array (for a full discussion of this issue, see \Variable Nomina-tion" in [8]). We also note that the equivalence of the MfFg's and MfGAD�16g's of theEPT, ODC, PJB and SSC problems is due to the similarity of the code structures of theseproblems.The second double column in Table 3.2 shows the memory requirements of the SPARSEcomputation,MfGSparseg, along with the ratio of this gradient memory requirement to thatof the corresponding original function. Here we see the terseness of SparsLinC's memoryallocation scheme in thatMfGSparseg is always within a factor 4.9{11.0 ofMfFg. The vari-ation among these ratios is indicative of the variation in the sparsity characteristics of theircorresponding gradient computations. Note that in all cases, MfGSparseg < MfGAD�16g,despite the fact that GSparse computes the whole gradient at once, whereas GAD�16 com-putes the gradient a strip at a time.3.2 RuntimeFigure 3.1 is a summary of all our gradient runtime results. For each of the optimizationproblems in Table 3.1, we timed the SPARSE and the stripmined NONSPARSE gradient com-putations for several problem sizes ranging from n = 2; 500 to n = 160; 000. Similar to thecase of memory requirements, here we were interested in the augmentation factor of the run-time of the gradient computation with respect to the runtime of the function computation.Subsequently, the plots shown in the six panels of Figure 3.1 are all gradient-to-functionruntime ratio plots.Each panel shows the gradient-to-function ratios for two of the MINPACK-2 problems,for both SPARSE and NONSPARSE gradient computations on a given machine. Note also thatfor each panel both axes are logarithmic in scale (log10).The most salient result evident in Figure 3.1 is the disparity between the SPARSE andNONSPARSE runtime ratios for each problem. In all cases the NONSPARSE gradient computationdisplays a purely linear behavior with respect to the function computation over the rangeof problem sizes. Note that in all cases the linear coe�cient is very close to 1 (by virtueof the fact that all the NONSPARSE plots are close to the y = x diagonal line). As wementioned in Section 1, this is due to the DO-loop implementation of VLCs in the derivativecode generated by ADIFOR in the default or NONSPARSE mode. On the other hand, theSPARSE runtime ratios, though not independent of n, show a markedly reduced dependency10

GL2 and MSA
10

2
10

4

10
2

10
4

Sparse vs Nonsparse Ratios on SPARC IPX

Problem Size

G
ra

di
en

t t
o

F
un

ct
io

n
R

at
io GL2 sparse

GL2 nonsparse
MSA sparse
MSA nonsparse

10
2

10
4

10
2

10
4

Sparse vs Nonsparse Ratios on RS/6000

Problem Size

G
ra

di
en

t t
o

F
un

ct
io

n
R

at
io GL2 sparse

GL2 nonsparse
MSA sparse
MSA nonsparse

SSC and EPT
10

2
10

4

10
2

10
4

Sparse vs Nonsparse Ratios on SPARC IPX

Problem Size

G
ra

di
en

t t
o

F
un

ct
io

n
R

at
io SSC sparse

SSC nonsparse
EPT sparse
EPT nonsparse

10
2

10
4

10
2

10
4

Sparse vs Nonsparse Ratios on RS/6000

Problem Size

G
ra

di
en

t t
o

F
un

ct
io

n
R

at
io SSC sparse

SSC nonsparse
EPT sparse
EPT nonsparse

PJB and ODC
10

2
10

4

10
2

10
4

Sparse vs Nonsparse Ratios on SPARC IPX

Problem Size

G
ra

di
en

t t
o

F
un

ct
io

n
R

at
io PJB sparse

PJB nonsparse
ODC sparse
ODC nonsparse

10
2

10
4

10
2

10
4

Sparse vs Nonsparse Ratios on RS/6000

Problem Size

G
ra

di
en

t t
o

F
un

ct
io

n
R

at
io PJB sparse

PJB nonsparse
ODC sparse
ODC nonsparse

Figure 3.1: Log-Log plots for each platform of gradient-to-function runtime ratios of theSPARSE and NONSPARSE runs for all gradient problems.11

0 20000 40000 60000 80000
Vector Linear Combinations Performed during Execution

0

500

1000

1500

2000

2500

3000

No
nze

roe
s p

er
Le

ft-H
and

-Si
de

Ve
cto

r

Sparsity Characteristics of MSA (n=2,500)

Minimum

Maximum

Median

Average

Figure 3.2: Sparsity of vectors on the left-hand side of vector linear combinations performedby SparsLinC during the execution of the gradient code for MSA, n = 2,500.on n.Note that in the case of four of the problems (EPT, MSA, ODC, and SSC), gradientcomputation is clearly feasible with SparsLinC, whereas the NONSPARSE computation is socostly that it would be considered impractical. For example, the runtime of computing theMSA and ODC gradients of size 160,000 on the SPARC IPX is less than 100 times thefunction runtime, which is a reasonable cost for some applications, given that SparsLinCrequires no rewriting of code. We also note that this cost can be further reduced by e�cienthand-coding of the gradient or, in the case of partially separable functions, by reformulatingthe gradient computation as a sparse Jacobian computation [4].The variance between the degree of disparity between NONSPARSE and SPARSE results isdue to the di�ering sparsity characteristics of the MINPACK-2 problems. Figure 3.2 depictsthe sparsity characteristics of the MSA problem, for the case of n = 2; 500. In contrast toFigure 2.1, where for parts of the GL2 computation we observe medians of approximately1000 nonzeroes per vector, in the case of the MSA computation the median is alwaysapproximately 1. Correspondingly, we note in Figure 3.1 the markedly smaller gradient-to-function ratios for the SPARSE MSA computation as compared with the SPARSE GL2computation.One aspect of the results in Figure 3.1 is that despite the qualitative similarity of thecorresponding curves on the SPARC IPX and the RS6000, the quantitative results di�er incertain characteristic ways. We note that in general, the disparity between the SPARSE andNONSPARSE results are somewhat larger on the SPARC IPX. As is clear from the plots, thisis caused both by the SPARSE ratios being smaller on the SPARC IPX (compare for examplethe SPARSE MSA results on the two platforms) and by the NONSPARSE ratios being larger.These performance di�erences are a re
ection of architectural features of the two plat-forms. The SPARC IPX essentially has a scalar processor and a
at memory hierarchy.12

0 2 4 6 8 10 12 14 16

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5
SparsLinC Performance Improvements on the SPARC IPX

Problem Size

O
r d

 e
 r

s
 o

 f
 M

 a
 g

 n
 i t

 u
 d

 e

I m
 p

 r
o

v e
 m

 e
 n

 t

EPT (SPARC IPX); ratio at n=160,000 : 339
GL2 (SPARC IPX); ratio at n=160,000 : 20.6
MSA (SPARC IPX); ratio at n=160,000 : 848
ODC (SPARC IPX); ratio at n=160,000 : 1080
PJB (SPARC IPX); ratio at n=160,000 : 18.6
SSC (SPARC IPX); ratio at n=160,000 : 513

0 2 4 6 8 10 12 14 16

x 10
4

0

0.5

1

1.5

2

2.5

3
SparsLinC Performance Improvements on the RS/6000

Problem Size

O
r d

 e
 r

s
 o

 f
 M

 a
 g

 n
 i t

 u
 d

 e

I m
 p

 r
o

v e
 m

 e
 n

 t

EPT (RS/6000); ratio at n=160,000 : 182
GL2 (RS/6000); ratio at n=160,000 : 11.4
MSA (RS/6000); ratio at n=160,000 : 333
ODC (RS/6000); ratio at n=160,000 : 226
PJB (RS/6000); ratio at n=160,000 : 9.94
SSC (RS/6000); ratio at n=160,000 : 160 Figure 3.3: Logarithmic plot for each platform of SPARSE divided by NONSPARSE runtimesfor all gradient problems. 13

Hence, vector operations execute only marginally faster, and memory locality (i.e., thereuse of data and the accessing of adjacent memory locations) is not much of an issue. Incontrast, the RS6000 architecture employs a superscalar chip and a cache-based memoryarchitecture. Hence, this machine performs better if executing short vector operations,since these operations can �ll the short pipes and take advantage of memory locality. Thisis advantageous in the NONSPARSE computation where the VLCs are implemented via DO-loops. On the other hand, indirect addressing, used extensively in the SparsLinC algorithm,while fairly inconsequential on the SPARC, may lead to a performance degradation on theRS6000, as memory locality su�ers.Figure 3.3 is an alternative way of presenting the results in Figure 3.1. Here we haveplotted for each machine and each problem the log10 of the ratio of NONSPARSE to SPARSE run-times in order to demonstrate the orders of magnitude runtime improvements achieved bySparsLinC. Note that the line de�nition box also includes for each problem the true ratioof NONSPARSE to SPARSE runtimes for the case of n = 160; 000.For the largest problem size we note that the improvements in the gradient computationdue to SparsLinC range from a factor of nearly 10 in the case of the PJB problem runningon the RS6000, to a factor of greater than 1,000 for the ODC problem on the SPARC IPX.We also note that for large problem sizes the runtime e�ciencies achieved by SparsLinCnear a plateau. We suspect that this behavior is caused by the dense gradient computationincreasingly dominating the overall computational task.4 Computing Sparse JacobiansFor our sparse Jacobian experiments we selected �ve problems from the MINPACK-2 prob-lem set of systems of nonlinear equations and one problem from the molecular distancegeometry (MDG) class of global minimization functions. The MINPACK-2 problems areidenti�ed in Table 4.1. These are a standard set of test problems; the reader is referred to[1] for detailed descriptions.The MDG problem is described in Mor�e and Wu [24] as follows: Given bond lengths �i;jbetween a subset S of the atom pairs, determine whether there is a molecule that satis�esthese bond length constraints. Mor�e and Wu formulated this problem in terms of �ndingthe global minimum of the functionf(x) = Xi;j2S wi;j �kxi � xjk2 � �2i;j�2 ; (4:1)where wi;j are positive weights, and xi; xj 2 IR3 are the positions of the i-th and j-thatoms in the molecule. Here, we reformulate the MDG problem in terms of �nding theglobal minimum of the nonlinear least squares problemminimizex2IRn kF (x) k2; (4:2)where F (x) 2 IRm; n = 3 � the number of atoms (3 coordinates per atom),m = the numberof �i;j terms that are speci�ed in order for the problem to be deterministic (m � n), andfor each �i;j , the corresponding (k-th) component of F (x) is de�ned byFk(x) = wi;j �kxi � xjk2 � �2i;j�2 ; k � (i; j); k 2 S:14

Table 4.1: MINPACK-2 Nonlinear EquationsName Description of the ProblemFDC Flow in a Driven CavityFIC Flow in a ChannelIER Incompressible Elastic RodSFD Swirling Flow between DisksSFI Solid Fuel IgnitionThis transformation, while not altering the nature of the underlying computation or solu-tion, poses the derivative problem as a sparse Jacobian computation.We compared the ADIFOR/SparsLinC approach with an approach that uses a graph-coloring algorithm to compute the compressed Jacobian. In this section, we describe thecompressed Jacobian approach. Then, we present the memory requirements and runtimeresults of both approaches for the MINPACK-2 and the MDG test problems.4.1 The Compressed Jacobian ApproachThe compressed Jacobian approach has been used as an e�ective strategy for computingsparse Jacobians in conjunction with both �nite di�erencing [17] and automatic di�eren-tiation methods [2]. The prerequisite for applying the compressed Jacobian approach toa given sparse Jacobian computation is a priori knowledge of the sparsity pattern of theJacobian.The basic idea underlying this approach is that all the relevant (i.e., nonzero) informationin the full Jacobian f 0(x) of size m�n can be represented in a compressed Jacobian C(x) ofsize m� p, where C(x) = f 0(x)S, for some seed matrix S, and usually p � n. Essentially,S maps each group of structurally orthogonal columns of f 0(x) (i.e., columns that do nothave a nonzero in the same row position) to a column of C(x). Because of the structuralorthogonality property we can uniquely extract all entries of the original Jacobian matrixfrom the compressed Jacobian [2].If the sparsity pattern of the Jacobian can be determined, graph-coloring techniques canbe used to arrive at S and p. These algorithms produce a partitioning of the columns of theJacobian into p structurally orthogonal groups by coloring the column-intersection graphassociated with the Jacobian. In our experiments we employ the graph-coloring softwaredescribed in [16] to obtain S, and then compute C(x) by initializing the ADIFOR-generatedderivative code of f(x) with the seed matrix set to S.From the point of view of computational complexity, the consequence of the compressedJacobian approach is clear. Speci�cally, the memory and runtime requirements of theJacobian computation will approximately augment function requirements by a factor prather than n. For many sparsity patterns, in particular regular grid problems, p is smalland independent of n. Hence, the compressed Jacobian can be computed in a constanttimes the function computation time, regardless of n.Naturally, the compressed Jacobian approach does introduce additional computationalrequirements, namely, (i) computing the sparsity pattern; (ii) performing the graph col-15

oring; and (iii) subsequent to the computation of the compressed Jacobian, unraveling toarrive at the full Jacobian. However, often Jacobian computation is a subproblem withinan optimization problem, and in an optimization algorithm we invariably need to computea sequence ff 0(xk)g of Jacobians for some sequence fxkg of iterates. In most cases we needto perform (i) and (ii) only once, since we can specify the closure of the sparsity patterns(i.e., a sparsity pattern that, for every iterate xk , contains the sparsity pattern of ff 0(xk)g).If we are not able to specify the closure, the compressed Jacobian approach requires a callto the graph-coloring software at each iteration. Finally, the computational requirementsof (iii) are relatively small.The interesting di�erence between the MINPACK-2 and the MDG Jacobians is thatfor each MINPACK-2 problem the chromatic number is independent of n, whereas thechromatic number for the MDG Jacobians grows as a function of n. This di�erence is dueto the \regularity" of the sparsity structures of the MINPACK-2 Jacobians as we changen, and the lack of the same in the case of the MDG Jacobians.Figure 4.1 shows the sparsity patterns for some SFD and MDG Jacobians (here each dotrepresents the occurrence of a nonzero in the �nal Jacobian). In the case of each problem,we have chosen two small problem sizes in order to visually compare their respective sparsitystructures. For the MDG problem of size n = 81, we have additionally plotted the upper left-hand corner of the Jacobian, since it is di�cult to distinguish the location of the nonzeroesin the full Jacobian.In comparing the sparsity patterns of the two SFD problems, we note that an identicallyshaped nonzero block structure appears repeatedly along the main diagonal as n is increased.The implication of this regularity of structure for the graph-coloring algorithm is that a �xednumber of colors are su�cient for the representation of the compressed Jacobian, that is,p remains constant for all n. Though the algorithms used in graph coloring are based onpartitioning methods, one can visualize the results as each block in the full Jacobian slidingleft to occupy the corresponding set of rows in the p columns of the compressed Jacobian.Though distinct in shape, the sparsity patterns of the remaining MINPACK-2 Jacobiansalso have this regularly repeating feature, since they are all regular grid problems.In contrast to the MINPACK-2 problems, for the two MDG Jacobians we note that as ngrows, the shape of the structures in the Jacobian sparsity pattern changes. This is clearlyapparent when comparing the sparsity pattern of the MDG Jacobian for n = 24 with thecorresponding slice of the MDG Jacobian for n = 81. The reason for this variation hasto do with the problem speci�cation itself. The formulation of the MDG problem is suchthat commensurate with increasing n, the number of atoms in the molecule is increased. Inorder for the problem to remain deterministic, corresponding to the increase in n, m (i.e.,the number of distances between the atoms (�i;j 's) which must be speci�ed) also increases.The net e�ect is the structural change evident in the Jacobian sparsity, which in turn leadsto a di�erent chromatic number being computed by the coloring algorithm for each n.In Sections 4.2 and 4.3 we will compare the performance of the ADIFOR/SparsLinC ap-proach with that of the ADIFOR/compressed Jacobian approach when the chromatic num-ber, p, is independent of n and when it is not, respectively. We refer to theADIFOR/SparsLinC approach as the SPARSE approach in the sense that the complete(sparse) Jacobian is computed, and we refer to the NONSPARSE ADIFOR/compressed Ja-cobian approach simply as the COMPRESSED approach.16

0 10 20 30 40

0

10

20

30

40

nz = 446

SFD Jacobian Sparsity, n = 42.

0 20 40 60 80

0

20

40

60

80

nz = 1066

SFD Jacobian Sparsity, n = 98.

0 10 20

0

5

10

15

20

nz = 138

MDG Jacobian Sparsity, n = 24.

0 10 20

0

5

10

15

20

nz = 123

Slice of MDG Jacobian, n = 81.

0 20 40 60 80

0

20

40

60

80

100

120

140

160

180

200

nz = 1194

MDG Jacobian Sparsity, n = 81.

Figure 4.1: SFD Jacobian sparsity patterns for n = 42, and n = 98, and MDG Jacobiansparsity patterns for n = 24, and n = 81. 17

Table 4.2: Structural Information about the MINPACK-2 JacobiansProblem nnz(f 0(x)) p density of C(x)FDC 13 m 19 68%FIC 8 m 9 89%IER 11 m 17 65%SFD 12 m 14 86%SFI 5 m 7 71%For our purposes of comparing the results of these two functionally equivalent ap-proaches, we �nd it useful to think of the COMPRESSED approach as the static approachto exploiting sparsity in AD, since it statically allocates arrays of length p for the storageof the directional gradient vectors, and since it requires a priori knowledge of the sparsitypattern of the Jacobian. Conversely, the SPARSE approach can be thought of as the dy-namic approach to exploiting sparsity in AD, since it uses dynamic memory allocation forthe storage of the directional gradient vectors, and since the sparsity pattern is computedas a by-product during the computation of the Jacobian.When p is independent of n and is relatively small, as in the case of the MINPACK-2problems, two issues in
uence whether the static or dynamic approach is preferable. The�rst is the issue of convenience. The dynamic approach does not require knowledge of theclosure of the sparsity patterns; hence, from the view point of code development, it is themore convenient approach. Note that if it is not possible to compute the sparsity closure,it may be the only approach.The second issue concerns the sparsity of the compressed Jacobian, which turns out tobe highly correlated with the relative performance of the SPARSE computation as comparedwith the COMPRESSED one. Consider the case where the compressed Jacobian is fully dense.Then the static approach is ideal, since it contains no extraneous zero-sum computationsnor does it allocate extraneous storage. Though by design the dynamic approach also avoidsextraneous computations and storage, it is burdened by overheads associated with dynamicmemory allocation and the maintenance of dynamic data structures. On the other hand,if the compressed Jacobian is sparse, the dynamic approach becomes preferable, since itsoverheads are o�set by the many extraneous computations and unused memory in the staticapproach.Tables 4.2 and 4.3 contain information relating to the structure of the MINPACK-2 andthe MDG Jacobian problems, respectively. In the case of the MINPACK-2 problems, m = nand p remains constant. Hence, in Table 4.2 we have shown for each problem the numberof nonzeroes in the Jacobian, nnz(f 0(x)), as well as the chromatic number, p, computedby the graph-coloring software. As previously discussed, p is independent of n for everyMINPACK-2 problem because the sparsity structure of the corresponding Jacobian is alsoindependent of n. On the other hand, for the MDG problem the Jacobian structure isdistinct for each problem size n. Hence, in Table 4.3 we have shown the corresponding n,m, and p values. For all n, the number of nonzeroes in the MDG Jacobian is given by18

Table 4.3: Structural Information about the Molecular Distance Geometry Jacobiansn m p density of C(x)375 2801 78 8%525 4051 78 8%648 7111 111 5%1029 15583 150 4%1536 30689 195 3%2187 55729 246 2%3000 94951 303 2%3993 153671 366 2%5184 238393 435 1%6591 356929 510 1%8232 518519 591 1%10125 733951 678 1%nnz(f 0(x))= 6m.The last column in both Tables 4.2 and 4.3 show the density of C(x), computed asnnz(f 0(x))=mp. In Sections 4.2 and 4.3, we will show the correlation of these densities withthe memory requirements and runtime performances of the two approaches.4.2 Computing Sparse Jacobians When p Is Independent of n4.2.1 Memory RequirementsTable 4.4 presents the total memory requirements of the two approaches for computing theJacobian of the MINPACK-2 problems for the case of n = 160; 000. In addition to thenotation introduced in Table 3.2, we use MfJg to denote the memory requirements of theCOMPRESSED approach, which includes the memory needed for the graph-coloring computa-tion, and MfJSparseg to denote the memory requirements of the SPARSE approach. For eachproblem, the ratio MfJg=MfFg remains constant for all n. Hence, Table 4.4 is a su�cientsummary of all the memory results.As mentioned in Section 3.1, the NONSPARSE mode of ADIFOR tends to augment memoryrequirements of the function computation linearly. In the case of the compressed Jacobiancomputations the augmentation factor is the chromatic number, p. However, since thegraph-coloring algorithm also introduces additional memory requirements proportional tonnz(f 0(x)), the MfJg=MfFg ratios in Table 4.4 are larger than the corresponding p valuesin Table 4.2, and we have MfJg � � p MfFg (4:3)with 1:5 � � � 1:9. In general, � is largest for the problems with denser compressedJacobians. For example, for the FIC problem, the compressed Jacobian is 89% dense and� = 1:9, whereas for the IER problem, the compressed Jacobian is 65% dense and � = 1:5.19

Table 4.4: Memory Requirements for MINPACK-2 Jacobians (in Mbytes; n = 160; 000)Problem MfFg MfJg MfJg=MfFg MfJSparseg MfJSparseg=MfFgFDC 2.57 74.90 29.1 54.35 21.1FIC 2.58 43.05 16.7 32.17 12.5IER 2.57 67.22 26.1 50.65 19.7SDF 2.58 60.84 23.6 41.77 16.2SFI 2.57 33.94 13.2 28.35 11.1Given that the memory requirements of the SPARSE approach are based on the need torepresent the nonzero information in the derivative computation, and that this informationis close in volume to the size of the compressed Jacobian (for the MINPACK-2 problems,within 65%� 89%), we expect the values of MfJSparseg=MfFg to be somewhat correlatedwith the corresponding p for each problem. A comparison of the last column of Table 4.4and the corresponding values of p shows this to be the case, where we haveMfJSparseg � � p MfFg (4:4)with 1:1 � � � 1:6.We note that the memory requirements of the COMPRESSED approach are 19% � 46%greater than the memory requirements of the SPARSE approach. This is somewhat surprising,since in all cases the compressed Jacobians are fairly dense, and one might suspect that astatic approach would be more parsimonious in terms of memory usage. The disparity ismainly attributable to the need for the additional memory required by the graph-coloringalgorithm in the COMPRESSED approach, but also to the terseness of SparsLinC's memoryallocation scheme, and the fact that SparsLinC exploits intermediate sparsity in derivativecomputations.Inequality (4.4) is a useful metric in terms of comparing the memory requirements of theSPARSE with the COMPRESSED approach. However, SparsLinC has no knowledge of p, whichcan be thought of as a global measure of sparsity. SparsLinC's representation of directionalgradient vectors is based on very localized information, namely, the number of nonzeroesin each gradient vector. The most striking example demonstrating the di�erence betweenthese global and local approaches toward storage would be the computation of a sparseJacobian with one fully dense row and a dense diagonal. In this case p = n; hence, thecompressed Jacobian approach would fail entirely. On the other hand, SparsLinC wouldneed to maintain only one vector of length n, and n � 1 vectors of length 1, resulting inmuch less memory-intensive (as well as faster) code.Hence, it would be more descriptive of the localized vector representations in SparsLinCto express the augmentation factor of the memory requirements of the SPARSE approachwith respect to those of the function, as proportional to the average number of nonzeroesper row of the Jacobian, MfJSparseg � �0 nnz(f 0(x))m MfFg; (4:5)20

Table 4.5: Runtime Ratios on the SPARC IPX (n = 160; 000)Problem Coloring COMPRESSED SPARSE SPARSE/COMPRESSEDFDC 19.4 15.9 52.7 3.3FIC 6.7 6.9 32.3 4.7IER 20.4 10.7 24.5 2.3SFD 9.0 8.3 25.2 3.0SFI 29.2 16.4 41.5 2.5Table 4.6: Runtime Ratios on the RS6000 (n = 160; 000)Problem Coloring COMPRESSED SPARSE SPARSE/COMPRESSEDFDC 31.5 11.5 109.0 9.5FIC 30.2 7.8 161.0 20.7IER 69.9 8.8 86.2 9.8SFD 54.7 10.9 156.0 14.3SFI 47.1 7.4 83.2 11.2where for the MINPACK-2 problems, 1:4 � �0 � 2:2. As we shall see in Section 4.3.1,inequality (4.5) is a more reliable generalization of the expected memory requirements ofthe SPARSE approach.4.2.2 RuntimeFigures 4.2 and 4.3 summarize the runtime results of the Jacobian problems on the SPARCIPX and RS6000, respectively. As in the case of the gradient experiments, the prob-lem sizes range from n = 2; 500 to n = 160; 000. Each panel in these �gures contains aplot of the SPARSE Jacobian-to-function runtime ratios. Additionally, the results from theCOMPRESSED computation are shown with two plots in each panel, one showing the coloring-to-function runtime ratios, and the other showing the compressed Jacobian-to-function run-time ratios. As we explained in Section 4.1, for most optimization algorithms, the coloringcomputation is performed only once, whereas iterates of the compressed Jacobian are com-puted repeatedly, hence the separation of the two computations in our plots. In addition toplotting these runtime ratios, we report their values for the case of n = 160; 000 in Tables4.5 and 4.6.A main feature of these results is that for both approaches the runtime of the Jacobiancomputation is independent of n, as shown by the constant ratio plots. In the case of theCOMPRESSED approach, this behavior is expected, since we know the Jacobian runtime willbe approximately equal to the linear augmentation of the function runtime by a factor p,and as we have stated, p is independent of n. Based on the COMPRESSED ratios in Tables 4.5and 4.6, we can state that TfJCompressedg � � p TfFg; (4:6)21

SPARC IPX
0 0.5 1 1.5 2

x 10
5

0

50

100
FDC

Problem Size

R
u

n
ti
m

e
 R

a
ti
o

s

0 0.5 1 1.5 2

x 10
5

0

20

40
FIC

Problem Size

R
u

n
ti
m

e
 R

a
ti
o

s

0 0.5 1 1.5 2

x 10
5

0

20

40
IER

Problem Size

R
u

n
ti
m

e
 R

a
ti
o

s

0 0.5 1 1.5 2

x 10
5

0

20

40
SFD

Problem Size

R
u

n
ti
m

e
 R

a
ti
o

s

0 0.5 1 1.5 2

x 10
5

0

20

40

SFI

Problem Size

R
u

n
ti
m

e
 R

a
ti
o

s

SPARSE (SPARC IPX)
NONSPARSE (SPARC IPX)
Coloring (SPARC IPX) Figure 4.2: Runtime ratios of MINPACK-2 Jacobian problems on the SPARC IPX. Foreach problem, COMPRESSED computation-to-function, SPARSE computation-to-function andcoloring-to-function runtime ratios are shown for problem sizes n = 2; 500 to n = 160; 000.22

RS6000
0 0.5 1 1.5 2

x 10
5

0

100

200
FDC

Problem Size

R
u

n
ti
m

e
 R

a
ti
o

s

0 0.5 1 1.5 2

x 10
5

0

100

200
FIC

Problem Size

R
u

n
ti
m

e
 R

a
ti
o

s

0 0.5 1 1.5 2

x 10
5

0

50

100
IER

Problem Size

R
u

n
ti
m

e
 R

a
ti
o

s

0 0.5 1 1.5 2

x 10
5

0

100

200
SFD

Problem Size

R
u

n
ti
m

e
 R

a
ti
o

s

0 0.5 1 1.5 2

x 10
5

0

50

100
SFI

Problem Size

R
u

n
ti
m

e
 R

a
ti
o

s

SPARSE (RS/6000)
NONSPARSE (RS/6000)
Coloring (RS/6000) Figure 4.3: Runtime ratios of MINPACK-2 Jacobian problems on the RS6000. Foreach problem, COMPRESSED computation-to-funtion, SPARSE computation-to-function andcoloring-to-function runtime ratios are shown for problem sizes n = 2; 500 to n = 160; 000.23

where Tf:g denotes the runtime of each computation and where 0:6 � � � 2:4 on theSPARC IPX and 0:5 � � � 1:1 on the RS6000. The variation in � values for the di�erentproblems is due to the peculiarities of each code, in particular the extent to which ADIFORcan minimize the computations performed in the derivative code through activity analysis.The variation in � values between the two platforms is due to architectural di�erencesreviewed in Section 3.2, though it is surprising to see that the RS6000 ratios are slightlygreater for the FIC and SFD problems. We note that in all cases � is a small constant,which matches our expectation.For the SPARSE Jacobian computation, the constant behavior with respect to functionruntime is due to the sparsity present in all the intermediate directional gradient vectors.Unlike the SPARSE gradient computation, where at least one directional gradient vector(i.e., the �nal gradient vector) grows to be fully dense, in the Jacobian computation allintermediate vectors will be as sparse or more sparse than the least sparse row of theJacobian. From the results of the coloring algorithm, we know that this row can have nomore than p nonzeroes (otherwise the compressed Jacobian would not \�t" into p columns).In terms of an augmentation over function time, we can state thatTfJSparseg � ! p TfFg; (4:7)where 1:4 � ! � 5:9 on the SPARC IPX and 5:0 � ! � 17:9 on the RS6000. Similar to thecase of the memory requirements of SPARSE approach, we can express the augmentation ofthe SPARSE runtime with respect to the function runtime as a factor of the average numberof nonzeroes per row of the Jacobian:TfJSparseg � !0 nnz(f 0(x))m TfFg; (4:8)where 2:1 � !0 � 8:3 on the SPARC IPX and 7:8 � !0 � 20:1 on the RS6000. We willrevisit inequality 4.8 in Section 4.3.2.The last column in Tables 4.5 and 4.6 show the ratios of SPARSE runtime to COMPRESSED run-time for each problem on each platform. These ratios|all of which are above 1|representthe penalty paid for the convenience of the dynamic approach. As expected, there is a strongcorrelation between these ratios and the sparsity of the corresponding compressed Jacobian.For example, on both platforms the highest ratios occur for the FIC problem, which has theleast sparse compressed Jacobian. Conversely, the ratios for the IER problem, which hasthe most sparse compressed Jacobian, are among the smallest. In general, the sparser thecompressed Jacobian, the better the runtime performance of the SPARSE approach relativeto that of the COMPRESSED approach.The coloring algorithm also demonstrates constant runtime behavior with respect tofunction runtime, with the constant factor usually being somewhere between the corre-sponding factors of the COMPRESSED and SPARSE computations. The closure of the sparsitypatterns of each MINPACK-2 Jacobian problem is known; hence, the impact of the one-time graph-coloring computation on the overall optimization computation would be mini-mal. Had the closure been unknown, the coloring computation would need to be repeatedat each iteration, with the possible consequence of the SPARSE approach having a fasterruntime. For example, in Table 4.5 note that for the IER and SFI problems on the SPARCIPX, the sum of the runtime ratios of the coloring and COMPRESSED compressed Jacobiancomputations exceeds the corresponding ratio from the SPARSE computations.24

4.3 Computing Sparse Jacobians When p Grows with n4.3.1 Memory RequirementsTable 4.7 presents the total memory requirements of the two approaches for computingthe Jacobians of the MDG problem for various problem sizes (we use the same notationintroduced in Table 4.4). In contrast to Table 4.4 where the memory requirements wereshown only for the largest-sized problem (n = 160; 000), Table 4.7 shows the memoryrequirements for all problem sizes, ranging from n = 375 to n = 10; 125. This is donefor two reasons. First, since now p grows with n, so too does the ratio MfJg=MfFg, incontrast to the constant MfJg=MfFg in the case of the MINPACK-2 Jacobians where pwas constant.Second, largely because of the growing value of p, the executable for the largest-sizedproblems became too large to �t in the virtual memory available on either platform. Hence,we resorted to the stripmining approach (see Section 3.1) for the COMPRESSED computation,which dramatically reduced memory requirements, while slightly increasing the runtime. Weused strip size ps = 16 for the problems of dimension n = 3; 000 to n = 8; 232. However, thischoice of ps for n = 10; 125 led to performance degradation as a result of paging. Hence, weused ps = 8 for the largest problem size (we discuss our choice of strip sizes further in Section4.3.2). In Table 4.7, the memory requirements of the stripmined COMPRESSED computationsare marked with � for ps = 16 and �� for ps = 8.The results in Table 4.7 show that for the non-stripmined COMPRESSED computation ofthe MDG Jacobians, the inequality (4.3) holds as it did in the case of the MINPACK-2Jacobians, with the di�erence that here p is not constant. Nonetheless, we can compute �in (4.3) for the MDG problem and ascertain that, as expected, its value varies only slightly(0:35 � � � 0:41) for the problem sizes n = 375 to n = 2; 187. We note that here � is afactor 3{5 smaller than in the MINPACK-2 cases. This is mainly due to the presence ofseveral large work arrays of dimension m in the MDG function code, which are unrelated toany derivative computation; hence, ADIFOR does not generate corresponding augmentedderivative work arrays.For the stripmined COMPRESSED computation of the MDG Jacobians, we need a newinequality, since now the linear augmentation is dependent on the strip size and not thechromatic number: MfJStripminedg � �0 ps MfFg (4:9)where �0 = 0:54 for all problem sizes for which ps = 16, and �0 = 0:74 when ps = 16.This strict dependance of �0 on ps implies that the memory requirement penalty of thestripmining method decreases with respect to the function memory requirements as thestrip size increases. By virtue of the same reasoning, we can explain why � < �0, sinceessentially the non-stripmined computation can be thought of as a stripmined computationwith one strip of size ps = p.We also observe from Table 4.7 that the MfJSparseg=MfFg ratio for the SPARSE ap-proach varies only slightly for di�erent problem sizes. As noted in Section 4.1, nnz(f 0(x))=6m for the MDG problem; hence the average number of nonzeroes per row of the Jacobianis always 6, for all n. Consequently, inequality (4.5) holds, and the corresponding range of�0 values for the MDG problem is given by, 1:5 � �0 � 1:7.25

Table 4.7: Memory Requirements for the Distance Geometry Jacobians (in Mbytes)n MfFg MfJg MfJg=MfFg MfJSparseg MfJSparseg=MfFgNo Stripmining375 0.07 2.22 31.7 0.70 10.0525 0.10 3.19 31.9 0.98 9.8648 0.18 7.46 41.4 1.65 9.21029 0.38 21.16 55.7 3.49 9.21536 0.75 52.66 70.2 6.77 9.02187 1.36 118.29 87.0 12.22 9.0Stripmined (ps = 16)3000 2.30 19.88� 8.6 20.71 9.03993 3.72 32.00� 8.6 33.47 9.05184 5.76 49.47� 8.6 51.85 9.06591 8.62 73.88� 8.6 77.48 9.08232 12.51 107.11� 8.6 112.16 9.0Stripmined (ps = 8)10125 17.70 103.76�� 5.9 158.47 9.0In summary, the memory requirements of the COMPRESSED approach are greater thanthose of the SPARSE approach by a large factor, ranging from 3.2 to 9.7 for the non-stripmined problems. This result is due to the compressed Jacobians of the MDG problemsbeing very sparse, and more and more so as n grows. Stripmining can be a very e�ectivemethod of reducing the memory requirements of the COMPRESSED approach|and, as we shallsee, at the cost of a modest runtime penalty. Finally, we note that though we did not needto stripmine the SPARSE computation, this method is equally possible and straightforward.4.3.2 RuntimeFigures 4.4 and 4.5 show the Jacobian-to-function runtime ratios for the MDG problemson the SPARC IPX and RS6000, respectively, with sizes n = 375 to n = 10125. Each �gureincludes three plots showing the ratios of the COMPRESSED (dotted), SPARSE (solid), andgraph-coloring (dashed) runtimes to the function runtimes. We also present the detailedJacobian-to-function and coloring-to-function runtime ratios on the SPARC IPX and theRS6000 in Tables 4.8 and 4.9, respectively. Note that, as before, the runtime ratios of astripmined COMPRESSED computation are marked with � for ps = 16 and �� for ps = 8.The main conclusion that can be drawn from the plots in Figures 4.4 and 4.5 is that thethe Jacobian-to-function runtime ratios appear to grow linearly with n for the COMPRESSED ap-proach, whereas these ratios are independent of n for the SPARSE approach. Hence, theSPARSE approach is clearly the method of choice for problems where the chromatic numbergrows as a function of the problem size and yet the sparsity of the corresponding Jacobiansremains constant (i.e., nnz(f 0(x)) is proportional to m). The e�cient runtime performance26

Table 4.8: Runtime Ratios of the MDG Problem on the SPARC IPXn Coloring COMPRESSED SPARSE SPARSE/COMPRESSEDNo Stripmining375 31.6 113 124 1.1525 31.3 121 128 1.1648 31.7 187 124 0.71029 32.0 222 126 0.61536 38.9 332 127 0.42187 39.2 420 123 0.3Stripmined (ps = 16)3000 38.9 431� 121 0.33993 44.71 557� 117 0.25184 46.70 645� 132 0.26591 50.91 782� 108 0.18232 49.60 857� 122 0.1Stripmined (ps = 8)10125 54.5 1233�� 123 0.1Table 4.9: Runtime Ratios of the MDG Problem on the RS6000n Coloring COMPRESSED SPARSE SPARSE/COMPRESSEDNo Stripmining375 66.7 108 257 2.4525 66.7 111 289 2.6648 73.3 160 287 1.81029 73.5 213 285 1.31536 75.0 281 288 1.02187 78.2 378 293 0.8Stripmined (ps = 16)3000 84.7 396� 289 0.73993 92.3 472� 289 0.65184 100.0 579� 285 0.56591 112.1 662� 291 0.48232 122.6 777� 294 0.4Stripmined (ps = 8)10125 123.5 1022�� 286 0.327

SPARC IPX
0 2000 4000 6000 8000 10000 12000

0

200

400

600

800

1000

1200

1400
MOLECULAR DISTANCE GEOMETRY

Problem Size

R
un

tim
e

R
at

io
s

Figure 4.4: Jacobian-to-function runtime ratios on the SPARC IPX. COMPRESSED (dotted),SPARSE (solid), and graph-coloring (dashed).of the SPARSE approach relative to the COMPRESSED approach is attributed to the fact thatthe already very sparse compressed Jacobians get even sparser as we increase the value ofn (see the last column of Table 4.3).In contrasting the numbers in Tables 4.8 and 4.9, we note that the previously discussedarchitectural e�ects (see Section 4.2.2) once again favor the SPARSE approach on the SPARCIPX and the COMPRESSED approach on the RS6000. In particular, the crossover point atwhich the SPARSE computation runs faster than the COMPRESSED computation occurs at n =525 on the SPARC IPX and at n = 2; 187 on the RS6000. Also, for the largest problem, thespeedup of the SPARSE versus the COMPRESSED computation is 10 on the SPARC IPX and3.5 on the RS6000.We observe that for both the straightforward and the stripmined COMPRESSED computa-tions, the inequality (4.6) holds; however, in contrast to the MINPACK-2 problems, p isnot a constant. For the MDG problem, we have 1:4 � � � 1:8 on the SPARC IPX and1:3 � � � 1:5 on the RS6000. Likewise, for the SPARSE computation inequality (4.8) holdswith 18 � !0 � 22 on the SPARC IPX and 43 � !0 � 49 on the RS6000.The strip sizes were chosen such that they would result in reasonable memory values. Aswas previously explained, stripmining is needed in order for the COMPRESSED computation to�t in memory, and comes at the cost of an additional (extraneous) function evaluation perstrip. In terms of the e�ect of stripmining on the runtime of the COMPRESSED computation,we note that the COMPRESSED plots in Figures 4.4 and 4.5 appear to have three distinct slopescorresponding to the three computational
avors: (i) straightforward or non-stripmined, (ii)stripmined with ps = 16, and (iii) stripmined with ps = 8. As expected, the slope of the28

RS6000
0 2000 4000 6000 8000 10000 12000

0

200

400

600

800

1000

1200
MOLECULAR DISTANCE GEOMETRY

Problem Size

R
un

tim
e

R
at

io
s

Figure 4.5: Jacobian-to-function runtime ratios on the RS6000. COMPRESSED (dotted),SPARSE (solid), and graph-coloring (dashed).line segment corresponding to (iii) is greater than that of (ii), because halving the stripsize, doubles the overhead function computations. By virtue of the same overhead e�ects,one might expect the slope of the line segment corresponding to (ii) to be greater than thatof (i). However, the contrary is true. We suspect that this fact is due to the degradationin runtime performance of the larger non-stripmined problems brought about by excessivepaging.Finally, we note in Figures 4.4 and 4.5 that the coloring-to-function ratio results|inlike manner to their the MINPACK-2 counterparts|are constant, with the constant factorbeing smaller than the corresponding factor for the SPARSE computation.5 ConclusionsWe have shown the e�ectiveness of the SparsLinC library in conjunction with the ADIFORtool for exploiting sparsity in automatic di�erentiation. The fact that SparsLinC does notrequire a priori knowledge about the structure of sparsity in a particular problem, coupledwith the fact that sparsity is exploited transparently, without the need for rewriting code,makes the ADIFOR/SparsLinC combination a valuable and convenient tool set. It can beused either for quick prototyping of the sparsity characteristics of a problem or as a meansof getting improved e�ciency in sparse derivative computations at very little cost in termsof program development time.The ADIFOR/SparsLinC approach reduces the runtime cost of computing gradients ofpartially separable functions by as many as three orders of magnitude over the NONSPARSE29

ADIFOR approach, while imposing modest memory requirements. SparsLinC does notrequire a priori knowledge about where and how the partial separability is coded; if itexists, SparsLinC will exploit the consequent sparsity.The relative e�ciency of SparsLinC's runtime results in computing sparse Jacobiansas compared with the performance of the compressed Jacobians method is dependent onwhether or not the chromatic number, p, derived from graph-coloring of the Jacobian isdependent on the problem size, n. (This comparison presupposes the feasibility of a prioricomputation of the closure sparsity pattern of the Jacobian needed for the compressedJacobian approach.) If p is independent of n, both the ADIFOR/SparsLinC approachand the ADIFOR/compressed Jacobians approach will run at a constant factor times thefunction runtime, with the compressed Jacobian approach typically being the faster of thetwo.If p grows with n, the compressed Jacobians approach will have a linear dependence on n,which implies much higher runtimes and memory requirements, making ADIFOR/SparsLinCthe clear method of choice in such cases.AcknowledgmentsWe thank Jorge Mor�e for his assistance with the MINPACK-2 problem set, Paul Hovlandand Aaron Ross for their contributions to building early prototypes of SparsLinC, AndrewMauer and Tim Knau� for their assistance in debugging SparsLinC, Vitaly Shmatikov forhis assistance with the sparsity characteristics plots, and Zhijun Wu for his assistance withthe MDG problem.References[1] B. M. Averick, R. G. Carter, J. J. Mor�e, and G. L. Xue. The MINPACK-2 test problemcollection. Technical Report ANL/MCS-TM-150, Rev. 1, Mathematics and ComputerScience Division, Argonne National Laboratory, 1992.[2] Brett Averick, Jorge Mor�e, Christian Bischof, Alan Carle, and Andreas Griewank.Computing large sparse Jacobian matrices using automatic di�erentiation. SIAM Jour-nal on Scienti�c Computing, 15(2):285{294, 1994.[3] M.C. Bartholomew-Biggs, L. Bartholomew-Biggs, and B. Christianson. Optimization& automatic di�erentiation in ADA: Some practical experiences. Optimization Methods& Software, 4(1):47{73, 1994.[4] Christian Bischof, Ali Bouaricha, Peyvand Khademi, and Jorge Mor�e. Computinggradients in large-scale optimization using automatic di�erentiation. Preprint MCS-P488-0195, Mathematics and Computer Science Division, Argonne National Labora-tory, 1995.[5] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland.ADIFOR: Generating derivative codes from Fortran programs. Scienti�c Programming,1(1):11{29, 1992. 30

[6] Christian Bischof, Alan Carle, and Peyvand Khademi. Fortran 77 interface speci�cationto the SparsLinC library. Technical Report ANL/MCS-TM-196, Mathematics andComputer Science Division, Argonne National Laboratory, 1994.[7] Christian Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. The ADIFOR2.0 system for the automatic di�erentiation of Fortran 77 programs, 1994. PreprintMCS-P481-1194, Mathematics and Computer Science Division, Argonne National Lab-oratory, and CRPC-TR94491, Center for Research on Parallel Computation, Rice Uni-versity. To appear in IEEE Computational Science & Engineering.[8] Christian Bischof, Alan Carle, Peyvand Khademi, Andrew Mauer, and Paul Hovland.ADIFOR 2.0 user's guide. Technical Memorandum ANL/MCS-TM-192, Mathematicsand Computer Science Division, Argonne National Laboratory, 1994. CRPC TechnicalReport CRPC-95516-S.[9] Christian Bischof, George Corliss, Larry Green, Andreas Griewank, Kara Haigler, andPerry Newman. Automatic di�erentiation of advanced CFD codes for multidisciplinarydesign. Journal on Computing Systems in Engineering, 3(6):625{638, 1992.[10] Christian Bischof, Larry Green, Kitty Haigler, and Tim Knau�. Parallel calculation ofsensitivity derivatives for aircraft design using automatic di�erentiation. In Proceed-ings of the 5th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysisand Optimization, AIAA 94-4261, pages 73{84. American Institute of Aeronautics andAstronautics, 1994.[11] Christian Bischof, Greg Whi�en, Christine Shoemaker, Alan Carle, and Aaron Ross.Application of automatic di�erentiation to groundwater transport models. In Alexan-der Peters, editor, Computational Methods in Water Resources X, pages 173{182, Dor-drecht, 1994. Kluwer Academic Publishers.[12] Christian H. Bischof and Moe El-Khadiri. Extending compile-time reverse mode and ex-ploiting partial separability in ADIFOR. Technical Report ANL/MCS-TM-163, Math-ematics and Computer Science Division, Argonne National Laboratory, 1992.[13] Christian H. Bischof, William T. Jones, Andrew Mauer, and Jamshid Samareh. Experi-ences with the application of the ADIC automatic di�erentiation tool to the CSCMDO3-D volume grid generation code. In Proceedings of the 34th AIAA Aerospace SciencesMeeting, pages AIAA 96{0716, 1996. To appear.[14] Ali Bouaricha and Jorge Mor�e. Impact of partial separability on large-scale optimiza-tion. Preprint MCS-P487-0195, Mathematics and Computer Science Division, ArgonneNational Laboratory, 1995.[15] Alan Carle, Lawrence Green, Christian Bischof, and Perry Newman. Applications ofautomatic di�erentiation in CFD. In Proceedings of the 25th AIAA Fluid DynamicsConference, AIAA Paper 94-2197. American Institute of Aeronautics and Astronautics,1994. 31

[16] Thomas F. Coleman, Burton S. Garbow, and Jorge J. Mor�e. Software for estimatingsparse Jacobian matrices. ACM Transactions on Mathematical Software, 10(3):329{345, 1984.[17] Thomas F. Coleman and Jorge J. Mor�e. Estimation of sparse Jacobian matrices andgraph coloring problems. SIAM Journal on Numerical Analysis, 20:187{209, 1983.[18] Laurence C. W. Dixon. Use of automatic di�erentiation for calculating Hessians andNewton steps. In Andreas Griewank and George Corliss, editors, Proceedings of theWorkshop on Automatic Di�erentiation of Algorithms: Theory, Implementation, andApplication, pages 114{125, Philadelphia, 1991. SIAM.[19] Laurence C. W. Dixon, Z. A. Maany, and M. Mohseninia. Automatic di�erentiation oflarge sparse systems. Journal of Economic Dynamics and Control, 14(2), 1990.[20] Andreas Griewank. The chain rule revisited in scienti�c computing. SIAM News, 24,No. 3, p. 20 & No. 4, p. 8, 1991.[21] Andreas Griewank, David Juedes, and Jean Utke. ADOL-C, a package for the auto-matic di�erentiation of algorithms written in C/C++. ACM Transactions on Mathe-matical Software, June 1995. To appear.[22] Andreas Griewank and Philippe L. Toint. On the unconstrained optimization of par-tially separable objective functions. In M. J. D. Powell, editor, Nonlinear Optimization1981, pages 301{312, London, 1981. Academic Press.[23] Jim E. Horwedel. GRESS: A preprocessor for sensitivity studies on Fortran programs.In Andreas Griewank and George F. Corliss, editors, Automatic Di�erentiation of Algo-rithms: Theory, Implementation, and Application, pages 243{250. SIAM, Philadelphia,1991.[24] J. J. Mor�e and Z. Wu. Global continuation for distance geometry problems. TechnicalReport MCS-P505-0395, Argonne National Laboratory, 1995.[25] Garry N. Newsam and John D. Ramsdell. Estimation of sparse Jacobian matrices.SIAM Journal on Algebraic and Discrete Methods, 4(3):404{418, 1983.[26] Seon Ki Park, Kelvin Droegemeier, Christian Bischof, and Tim Knau�. Sensitivityanalysis of numerically-simulated convective storms using direct and adjoint methods.In Preprints, 10th Conference on Numerical Weather Prediction, Portland, Oregon,pages 457{459. American Meterological Society, 1994.[27] Nicole Rostaing, Stephane Dalmas, and Andre Galligo. Automatic di�erentiation inOdyssee. Tellus, 45a(5):558{568, October 1993.32

